Script Library: 1221 scripts
 

bigmath.r

Rebol [ title: "Functions for calculations with big integer numbers" file: %bigmath.r author: "Marco Antoniazzi" email: [luce80 AT libero DOT it] date: 01-04-2019 version: 0.2.0 Purpose: {Make calculations with big integer numbers.} History: [ 0.0.1 [28-09-2018 "Started"] 0.1.0 [30-12-2018 "First version"] 0.2.0 [01-04-2019 "Complete examples"] ] Category: [tools math] library: [ level: 'intermediate platform: 'all type: 'function domain: [tools math] tested-under: [View 2.7.8.3.1] support: none license: 'BSD ] Note: {Some things inspired by %bignumbers.r of Alban Gabillon. It was a starting point and verification suite} ] if not value? 'big-math-ctx [; avoid redefinition big-math-ctx: context [ ; misc round-fast: func [n] [n: 0.4 + n to integer! n - (n // 1)] ; <<<<---- 0.4 to be "prudent" ! non-zero: complement charset "0" trim-zeros: func [n [string!]][head remove/part n any [find n non-zero 0]] ; maxint64: 9223372036854775807 ; sign check and change big-absolute: func [ "Returns the absolute value of a big number." number [string!] ][ number: trim-zeros copy number if #"-" = number/1 [remove number] number ] big-negate: func [ "Changes the sign of a big number." number [string!] ][ number: trim-zeros copy number either #"-" = number/1 [remove number][head insert number #"-"] ] big-negative?: func [ "Returns TRUE if the big number is negative." number [string!] ][ parse number [any "0" number:] ; skip leading 0s #"-" = number/1 ] big-positive?: func [ "Returns TRUE if the big number is non negative." number [string!] ][ parse number [any "0" number:] ; skip leading 0s #"-" <> number/1 ] big-sign?: func [ "Returns sign of big number as 1, 0, or -1 (to use as multiplier).}" number [string!] ][ either big-positive? number [1] [either big-negative? number [-1] [0]] ] ; ; comparisons big-equal?: func [ "Returns TRUE if the values are equal." value1 [string!] value2 [string!] ][ parse value1 [any "0" value1:] ; skip leading 0s parse value2 [any "0" value2:] ; skip leading 0s equal? value1 value2 ] big-not-equal?: func [ "Returns TRUE if the values are not equal." value1 [string!] value2 [string!] ][ parse value1 [any "0" value1:] ; skip leading 0s parse value2 [any "0" value2:] ; skip leading 0s not equal? value1 value2 ] big-greater?: func [ "Returns TRUE if the first value is greater than the second value." value1 [string!] value2 [string!] ][ parse value1 [any "0" value1:] ; skip leading 0s parse value2 [any "0" value2:] ; skip leading 0s case [ all [big-positive? value1 big-negative? value2] [true] all [big-negative? value1 big-positive? value2] [false] all [(length? value1) > (length? value2) big-positive? value1 big-positive? value2] [true] all [(length? value1) < (length? value2) big-positive? value1 big-positive? value2] [false] all [(length? value1) > (length? value2)] [false] ; all negative all [(length? value1) < (length? value2)] [true] ; all negative ; same lengths and same signs equal? value1 value2 [false] big-negative? value1 [lesser? value1 value2] 'else [greater? value1 value2] ] ] big-greater-or-equal?: func [ "Returns TRUE if the first value is greater than or equal to the second value." value1 [string!] value2 [string!] ][ if any [big-greater? value1 value2 big-equal? value1 value2] [return true] false ] big-lesser?: func [ "Returns TRUE if the first value is less than the second value." value1 [string!] value2 [string!] ][ not big-greater-or-equal? value1 value2 ] big-lesser-or-equal?: func [ "Returns TRUE if the first value is less than or equal to the second value." value1 [string!] value2 [string!] ][ if any [not big-greater? value1 value2 big-equal? value1 value2] [return true] false ] ; ; simple arithmetic big-add: func [ "Add two big numbers represented as strings in base 10" ; simple algorithm ; from right to left add 14 digits and previous carry ; insert last carry if needed ; all calcs are done using decimal!s to speed up things value1 [string!] value2 [string!] /local ;zeros L1 L2 n res carry out ][ ; 18 is (length? "9223372036854775807") - 1 ; 14 is max R2 decimal! non-scientific moldable representation value1: copy value1 L1: length? value1 L2: length? value2 if L1 < L2 [return big-add value2 value1] ; case [ all [big-positive? value1 value2 = "1" (last value1) < #"9"] [ value1/:L1: value1/:L1 + 1 return value1 ] value1 = "0" [return value2] value2 = "0" [return value1] all [big-positive? value1 big-positive? value2][ ; go on ] all [big-positive? value1 big-negative? value2][ return big-subtract value1 big-negate value2 ] all [big-negative? value1 big-positive? value2][ return big-subtract value2 big-negate value1 ] all [big-negative? value1 big-negative? value2][ return big-negate big-add big-negate value1 big-negate value2 ] ; ] if L1 // 14 <> 0 [value1: head insert/dup value1 "0" 14 - (L1 // 14)] L1: length? value1 if L2 < L1 [value2: head insert/dup copy value2 "0" L1 - L2] out: make string! L1 carry: 0 value1: tail value1 value2: tail value2 repeat n L1 / 14 [ value1: skip value1 -14 value2: skip value2 -14 ; do decimal! addition res: (make decimal! copy/part value1 14) + (make decimal! copy/part value2 14) + carry * 1.0 carry: 0 if res >= 1E+14 [ res: res - 1E+14 carry: 1 ] ; re-convert to string! res: form res insert/part res "00000000000000.0" (16 - length? res) insert head out copy/part head res 14 ] if carry = 1 [out: head insert out #"1"] trim-zeros out ] big-subtract: func [ "Subtract two big numbers represented as strings in base 10" ; simple algorithm ; from right to left sub 14 digits and previous borrow ; all calcs are done using decimal!s to speed up things value1 [string!] value2 [string!] /local L1 L2 n res borrow out ][ ; 18 is (length? "9223372036854775807") - 1 ; 14 is max R2 decimal! non-scientific moldable representation value1: copy value1 L1: length? value1 L2: length? value2 case [ all [big-greater? value1 "1" value2 = "1" (last value1) > #"0"] [ value1/:L1: value1/:L1 - 1 return value1 ] big-equal? value1 value2 [return "0"] value2 = "0" [return value1] value1 = "0" [return big-negate value2] all [big-positive? value1 big-positive? value2 big-greater? value1 value2][ ; go on ] all [big-positive? value1 big-positive? value2 big-lesser? value1 value2][ return big-negate big-subtract value2 value1 ] all [big-positive? value1 big-negative? value2][ return big-add value1 big-negate value2 ] all [big-negative? value1 big-positive? value2][ return big-negate big-add big-negate value1 value2 ] all [big-negative? value1 big-negative? value2 big-greater? value1 value2][ return big-subtract big-negate value2 big-negate value1 ] all [big-negative? value1 big-negative? value2 big-lesser? value1 value2][ return big-negate big-subtract big-negate value1 big-negate value2 ] ; ] L1: length? value1 if L1 // 14 <> 0 [value1: head insert/dup value1 "0" 14 - (L1 // 14)] L1: length? value1 if L2 < L1 [value2: head insert/dup copy value2 "0" L1 - L2] L2: length? value2 out: make string! L1 borrow: 0 value1: tail value1 value2: tail value2 repeat n L2 / 14 [ value1: skip value1 -14 value2: skip value2 -14 ; do decimal! subtraction res: (make decimal! copy/part value1 14) - (make decimal! copy/part value2 14) - borrow + 1E+14 borrow: 1 if res >= 1E+14 [ res: res - 1E+14 borrow: 0 ] res: form res ; ; must pad with 0s to keep number right aligned L1: length? res if L1 < (14 + 2) [res: head insert/dup res "0" 14 + 2 - L1] insert head out copy/part res (length? res) - 2 ] trim-zeros out ] big-multiply: func [ "Multiply two big numbers represented as strings in base 10" ; simple long (grade school) multiplication algorithm ; all calcs are done using decimal!s to speed up things value1 [string!] value2 [string!] /local L1 L2 n partres lenpartres res v2 carry high low prev_high valuein out ][ ; 18 is (length? "9223372036854775807") - 1 ; 14 is max R2 decimal! non-scientific moldable representation ; 7 is 14 / 2 L1: length? value1 L2: length? value2 if L1 < L2 [return big-multiply value2 value1] case [ value1 = "-1" [return big-negate value2] value1 = "0" [return "0"] value1 = "1" [return value2] value1 = "2" [return big-add value2 value2] value2 = "-1" [return big-negate value1] value2 = "0" [return "0"] value2 = "1" [return value1] value2 = "2" [return big-add value1 value1] ; faster then big-multiply_2 big-equal? value1 value2 [return big-square value1] ; (big-sign? value1) <> big-sign? value2 [return big-negate big-multiply big-absolute value1 big-absolute value2] ] value1: copy value1 if L1 // 7 <> 0 [value1: head insert/dup value1 "0" 7 - (L1 // 7)] L1: length? value1 value2: copy value2 if L2 // 7 <> 0 [value2: head insert/dup value2 "0" 7 - (L2 // 7)] L2: length? value2 partres: make block! L1 + L2 / 7 partres: insert/dup partres 0 L1 + L2 / 7 lenpartres: 1 + length? head partres value2: tail value2 repeat n L2 / 7 [ partres: at head partres lenpartres - n prev_high: 0 value2: skip value2 -7 v2: make decimal! copy/part value2 7 value1: tail value1 repeat n L1 / 7 [ value1: skip value1 -7 ; do decimal! multiplication res: (make decimal! copy/part value1 7) * v2 high: to integer! (res / 1E7) low: res - (high * 1E7) ; sum "central" partial results such as: ; 43058618700734 ; 56382150198613 partres/1: partres/1 + low + 0.0 + prev_high partres: back partres prev_high: high ] partres/1: high ] ;re-convert partial results to string! adding also carries out: make string! L1 + L2 carry: 0 repeat n lenpartres - 1 [ res: partres/(lenpartres - n) + carry carry: to integer! (res / 1E7) res: to integer! res - (carry * 1E7) insert head out res: form res if 7 > length? res [insert/dup head out "0" 7 - length? res] ] trim-zeros out ] big-multiply_2: func [ ; this is faster then "normal" big multiplication BUT slower then value + value value [string!] /local L1 out carry res ][ out: copy "" L1: length? value if L1 // 9 <> 0 [value1: insert/dup value "0" 9 - (L1 // 9)] carry: 0 value: tail value repeat n round/ceiling (length? head value) / 9 [ value: skip value -9 res: 0.0 + carry + shift/left (make integer! copy/part value 9) 1 carry: 0 if res >= 1E9 [ res: res - 1E9 carry: 1 ] res: form res L1: length? res if L1 < (9 + 2) [res: head insert/dup res "0" 9 + 2 - L1] ; 2 is length? ".0" insert head out copy/part res (length? res) - 2 ] if carry = 1 [out: head insert out #"1"] trim-zeros out ] big-square: func [ "Returns the big number multiplied by itself" number [string!] /local n u v uv c carry ai aj number-7 n7 L1 out ][ number: big-absolute number n: length? number case [ number = "0" [return "0"] number = "1" [return "1"] number = "2" [return "4"] ] if n // 7 <> 0 [number: head insert/dup copy number "0" 7 - (n // 7)] n: length? number n7: n / 7 c: make block! 2 * n7 + 1 c: head insert/dup c 0.0 2 * n7 + 1 number: tail number repeat i n7 [;probe i number: skip number -7 ai: make decimal! copy/part number 7 uv: c/(2 * i) + (ai * ai) carry: to-integer (uv / 1E7) c/(2 * i): uv - (carry * 1E7) number-7: number ;for j i + 1 n7 1 [ repeat j n7 - i [ number-7: skip number-7 -7 aj: make decimal! copy/part number-7 7 uv: c/(i + i + j) + (2 * aj * ai) + carry carry: to-integer (uv / 1E7) c/(i + i + j): uv - (carry * 1E7) ] c/(i + n7 + 1): carry ] ;re-convert partial results to string! out: make string! 2 * n + 1 ;probe remove c repeat n length? c [ res: form c/:n + 0.0 ; also convert to decimal! since short nums are formed into integer!s L1: length? res if L1 < (7 + 2) [res: head insert/dup res "0" 7 + 2 - L1] ; 2 is length? ".0" insert head out copy/part res (length? res) - 2 ] trim-zeros out ] big-divide: func [ "Divide two big numbers represented as strings in base 10" ; _grade school_ long division algorithm but ; 1st approximation is done using decimal!s then calc of ; reminder is done using "full" big multiplication and subtraction ; things get complicated when 1st approximation is wrong and we have to adjust for it value1 [string!] value2 [string!] /modulo "Return modulo" /local L1 L2 n partres lenpartres res extrazeros highdenom10 prevrem remapprox quotapprox quotapproxint numerapprox out ][ ; 18 is (length? "9223372036854775807") - 1 ; 14 is max R2 decimal! non-scientific moldable representation ; 7 is 14 / 2 value1: trim-zeros copy value1 value2: trim-zeros copy value2 ;out: bdivide reverse copy value1 reverse copy value2 ;return either modulo [out/2][out/1] L1: length? value1 L2: length? value2 case [ big-lesser? value1 value2 [return either modulo [value1]["0"]] value2 = "1" [return either modulo ["0"][value1]] value2 = "2" [ return either modulo [either big-odd? value1 ["1"]["0"]][big-divide_2_8 value1] ] big-equal? value1 value2 [return either modulo ["0"]["1"]] value2 = "0" [to-error "Big divide by 0"] ; "1.INF" L1 < 18 [ L1: make decimal! value1 L2: make decimal! value2 return head clear find form either modulo [L1 // L2][L1 / L2] "." ] ; ] ; if this algorithm gives wrong results use an other ;out: bdiv_n value1 value2 ;return either modulo [big-subtract value1 big-multiply value2 out][out] extrazeros: 0 ; denom length must be >= 10 if L2 < 10 [ ;if modulo [return big-mod-int value1 to-integer value2] extrazeros: 10 - L2 value1: head insert/dup tail value1 "0" extrazeros value2: head insert/dup tail value2 "0" extrazeros ] L1: length? value1 L2: length? value2 out: make string! L1 - L2 highdenom10: make decimal! copy/part value2 10 prevrem: value1 loop round L1 - L2 + 1 / 2 [ remapprox: copy/part prevrem 18 quotapprox: (make decimal! remapprox) / highdenom10 if quotapprox < 1.0 [break] quotapproxint: form to integer! quotapprox if all [#"0" = last quotapproxint (length? quotapproxint) > 4] [clear skip tail quotapproxint -4] if all [#"9" = last quotapproxint 9 = length? quotapproxint] [remove back tail quotapproxint] out: head insert tail out quotapproxint n: 1 if big-greater? value2 copy/part value1 L2 [n: 0] ; take one less digit if (lo: length? out) > (L1 - L2 + n) [ out: copy/part out L1 - L2 + n numerapprox: big-multiply value2 out i: 0 while [big-greater? numerapprox value1] [ if 11 = i: i + 1 [break] ; avoid infinte loop insert skip tail out 0 - ((length? quotapproxint) - (lo - length? out)) #"0" remove back tail out numerapprox: big-multiply value2 out numerapprox: head insert/dup tail numerapprox "0" L1 - length? numerapprox ] remapprox: big-subtract value1 numerapprox ;copy/part numerapprox L1 break ] numerapprox: big-multiply value2 out numerapprox: head insert/dup tail numerapprox "0" L1 - length? numerapprox if all [big-greater? numerapprox value1 (last out) > #"0"] [ out: big-subtract out "1" numerapprox: big-multiply value2 out numerapprox: head insert/dup tail numerapprox "0" L1 - length? numerapprox ] if all [big-greater? numerapprox value1 (last out) > #"0"][ out: big-subtract out "1" numerapprox: big-multiply value2 out numerapprox: head insert/dup tail numerapprox "0" L1 - length? numerapprox ] n: 0 while [big-greater? numerapprox value1] [ ; still wrong approximation ? :`(((( ; try inserting 0s at left (must also remove last char! :(( ) if 11 = n: n + 1 [break] ; avoid infinte loop insert skip tail out 0 - length? form quotapproxint #"0" remove back tail out numerapprox: big-multiply value2 out numerapprox: head insert/dup tail numerapprox "0" L1 - length? numerapprox out: trim-zeros out ] ; optimize: skip value1 9 * n skip numerapprox 9 * n remapprox: big-subtract value1 copy/part numerapprox L1 if remapprox = "0" [break] prevrem: remapprox ] if all [extrazeros > 0 remapprox <> "0"] [remapprox: head clear skip tail remapprox negate extrazeros] out: head clear skip tail out (L1 - L2 + 1) - (length? out) if big-greater? remapprox value1 [to-error "wrong big division !!"] either modulo [remapprox][out] ] bdiv_n: func [ "Divide two big numbers represented as strings in base 10" ; algorithm: calc 1/b with Newton's method (scaled up to avoid floating point), then do a * result ; this is much slower then grade-school long division a [string!] b [string!] /local L1 L2 x n factor1 factor2 scaled2 prev_x ][ L1: length? a L2: length? b factor1: L1 + 1 factor2: L1 + L2 + 1 ; initial guess x: form 1.0 / (to-decimal copy/part b 18) ; remove mantissa x: head any [remove find x "." x] x: head any [clear find x "E" x] ; avoid mantissa by scaling all x: head insert/dup tail x "0" factor1 + 1 - length? x scaled2: head insert/dup tail copy "2" "0" factor2 prev_x: "0" while [not big-equal? prev_x x][ prev_x: x x: bigmath [scaled2 - (b * x) * x] ; re-scale down x: head clear skip tail x 0 - factor2 ] n: 1 if big-greater? b copy/part a L2 [n: 0] ; take one less digit ; final multiplication x: copy/part prev_x: bigmath [a * x] L1 - L2 + n ; adjust if necessary if n = 1 [ ;try round up if ( prev_x/(L1 - L2 + 1 + 1)) > #"5" [ prev_x: big-add x "1" ; not too much? if bigmath [ (b * prev_x) <= a] [x: prev_x] ] ] x ] big-divide_2_8: func [ "Divide big integer by 2. Optimized version using integer!s for calcs" value [string!] /local L1 out borrow val res ][ L1: length? value if L1 // 8 <> 0 [value: head insert/dup copy value "0" 8 - (L1 // 8)] L1: length? value out: make string! L1 borrow: 0 repeat n round/ceiling L1 / 8 [ val: make integer! copy/part value 8 res: shift (val + borrow) 1 borrow: 0 if odd? val [borrow: 100000000] value: skip value 8 res: form res L1: length? res if L1 < 8 [res: head insert/dup res "0" 8 - L1] insert tail out res ] trim-zeros out ] big-divide_2_14: func [ "Divide big integer by 2. Optimized version using decimal!s for calcs" value [string!] /local L1 out borrow val res ][ L1: length? value if L1 // 14 <> 0 [value: head insert/dup value "0" 14 - (L1 // 14)] L1: length? value out: make string! L1 borrow: 0 repeat n round/ceiling L1 / 14 [ val: make decimal! copy/part value 14 res: val + borrow / 2.0 borrow: 0 if 0 <> (val // 2.0) [borrow: 1E+14] value: skip value 14 res: form res L1: length? res if L1 < (14 + 2) [res: head insert/dup res "0" 14 + 2 - L1] ; 2 is length? ".0" ;insert tail out res insert tail out copy/part res (length? res) - 2 ] trim-zeros out ] big-mod-int: func [ num [string!] a [number!] /local res ][ ; Initialize result res: 0 ; One by one process all digits of 'num' repeat i length? num [ res: res * 10 + (num/:i - #"0") // a ] form to-integer res ] ; ; square-root, power, power-mod big-sqrt: big-square-root: func [ "Returns the square root of a big number." ; Babylonian / Newton method using integer ops ; since result is approximated (if value is not a perfect square) the algorithm ; can "oscillate", so choose the 1st repeated value to avoid infinite loop and ; also to avoid checking by calculating eps: value - (result * result). (is 5 enough?) value [string!] /local prev_res prev_2_res prev_3_res prev_4_res prev_5_res L1 res ][ prev_res: "0" prev_2_res: "0" prev_3_res: "0" prev_4_res: "0" prev_5_res: "0" L1: length? value if odd? L1 [value: head insert copy value "0" L1: L1 + 1] ; initial approximation res: form to-integer square-root to-decimal copy/part value 4 res: head insert/dup tail res "0" L1 / 2 - 2 while [not any [res = prev_res res = prev_2_res res = prev_3_res res = prev_4_res res = prev_5_res]] [ prev_5_res: prev_4_res prev_4_res: prev_3_res prev_3_res: prev_2_res prev_2_res: prev_res prev_res: res res: bigmath [value / res + res / 2] ] res ] big-power: func [ "Returns the first number raised to the second number." ; algorithm: iterative exponentiation by squaring number [string!] exponent [string!] /local result ][ case [ ;exponent < 0 [ ; number: 1 / number ; exponent: - exponent ;] exponent = "0" [return "1"] ;exponent < 1 [return bnthroot number exponent] exponent = "1" [return number] ] case [ number = "1" [return "1"] number = "0" [return "0"] ] result: "1" while [big-greater? exponent "1"] [ if odd? last exponent [ result: big-multiply result number ] exponent: big-divide exponent "2" number: big-multiply number number ] big-multiply result number ] big-power-mod: func [ ; algorithm: iterative exponentiation by squaring number [string!] exponent [string!] modulo [string!] /local result ][ number: bigmath [number // modulo] result: "1" while [bigmath [exponent > 1]] [ if big-odd? exponent [ bigmath ['result := (result * number // modulo)] ; parens used because there is no precedence ] bigmath [ ('exponent := (exponent / 2)) ('number := (number * number // modulo)) ] ] bigmath [result * number // modulo] ] ; ; GCD, lcm, mod-inverse big-gcd: func [ a [string!] b [string!] /local temp ][ while [not big-equal? b "0"][ temp: b b: big-divide/modulo a b a: temp ] a ] big-lcm: func [ a [string!] b [string!] ][ bigmath [big-absolute (a * b) / big-gcd a b] ] big-mod-inverse: func [ "Returns a^-1 mod n" a [string!] n [string!] /local t newt r newr quotient temp ][ t: "0" newt: "1" r: n newr: a while [not big-equal? newr "0"][ quotient: bigmath [r / newr] ; FIXME: set [quotient reminder] big-divide/as-block r newr set [r newr] reduce [newr bigmath [r - (quotient * newr)]] ; this is the reminder of previous division set [t newt] reduce [newt bigmath [t - (quotient * newt)]] ] if big-greater? r "1" [return none] ;"a is not invertible"] if big-lesser? t "0" [t: bigmath [t + n]] t ] ; ; odd?, even?, random big-odd?: func [ "Returns TRUE if the number is odd." number [string!] ][ odd? last number ] big-to-odd: func [ "Makes a big number odd." number [string!] ][ number/(length? number): number/(length? number) or 1 number ] big-even?: func [ "Returns TRUE if the number is even." number [string!] ][ even? last number ] big-random: func [ min [integer! string!] "Minimum number of digits" max [integer! string!] "Maximum number of digits" /local digits tot out rc ][ min: to-integer min max: to-integer max digits: "123456789001379" tot: min - 1 + random max - min + 1 out: make string! tot ;insert/dup out digits to-integer tot / length? digits ;insert out copy/part digits tot // length? digits ;random out while [tot > length? out] [while [(rc: random #"9") < #"0"][] insert out rc] trim-zeros out ] big-random-prime: func [ bits [integer!] /local digits p ][ digits: to integer! log-10 2 ** bits random/seed now/time/precise until [ p: big-random digits digits + 1 p: bigmath [p * 6 + 1] big-is_probable_prime p 6;length? primes ] p ] ; ; miller-rabin primes: ;[3 5 7 11 [13 17 19 23 29 31 37 41 43 47 53] { 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281 283 293 307 311 313 317 331 337 347 349 353 359 367 373 379 383 389 397 401 409 419 421 431 433 439 443 449 457 461 463 467 479 487 491 499 503 509 521 523 541 547 557 563 569 571 577 587 593 599 601 607 613 617 619 631 641 643 647 653 659 661 673 677 683 691 701 709 719 727 733 739 743 751 757 761 769 773 787 797 809 811 821 823 827 829 839 853 857 859 863 877 881 883 887 907 911 919 929 937 941 947 953 967 971 977 983 991 997 1009 1013 1019 1021]} forskip primes 1 [primes/1: form primes/1] big-is_probable_prime: func [ "Returns true if number is probably prime k times using Miller-Rabin method." n [string!] k [integer!] /local rest sx dx d i a x composite n-1 ][ if big-even? n [return false] ; divisible by 2 rest: 0 if 0 = repeat i length? n [rest: rest + n/:i // 3] [return false] ; divisible by 3 if #"5" = last n [return false] ; divisible by 5 rest: n/1 - #"0" if 0 = forall n [ rest: rest * 3 + (any [n/2 #"0"]) - #"0" // 7] [return false] ; divisible by 7 n: head n sx: 0 forskip n 2 [sx: sx + n/1 - #"0" // 11] dx: 0 n: next n forskip n 2 [dx: dx + n/1 - #"0" // 11] if sx = dx [return false] ; divisible by 11 ; FIXME: generalizzare il criterio di divisibilità, trovare il resto e provare a sfruttarlo per velocizzare il calcolo della divisione n: head n ; Find d such that n = 2^r * d + 1 for some r >= 1 d: n-1: bigmath [n - 1] while [bigmath [d // 2 = 0]][ d: bigmath [d / 2] ] composite: true ; assume composite repeat i k [ ;prin "is-p? " probe i a: primes/:i ; or choose a random number ? ;a: big-random to-integer (length? n) / 2 to-integer (length? n) / 2 + 5 x: big-power-mod a d n while [bigmath [d <> n-1]] [ if any [big-equal? x "1" big-equal? x n-1] [composite: false break] bigmath [ ('x := (x * x // n)) ('d := (d * 2)) ] ] if composite [return false] ] true ] ; ; bigmath form-nums: func [ "Convert numbers to strings" block [block! paren!] /local out ][ out: copy [] forall block [ while [paren? block/1] [ insert/only tail out to-paren form-nums block/1 block: next block if tail? block [return out] ] insert/only tail out either number? block/1 [ form block/1 ][ block/1 ] ] out ] infixes: [ + big-add * big-multiply - big-subtract / big-divide ** big-power // big-divide/modulo = big-equal? <> big-not-equal? > big-greater? >= big-greater-or-equal? < big-lesser? <= big-lesser-or-equal? := setl ] prefixes: [- big-negate + [] ] setl: func [word [word!] value] [do reduce [to-set-word word value]] infix-to-prefix: func [ "Converts math expression with infix notation to prefix one. (No precedences)" block [block! paren!] /local new out ][ out: copy [] forall block [ while [paren? block/1] [ insert tail out infix-to-prefix block/1 block: next block if tail? block [return out] ] either all [ new: select prefixes block/1 any [head? block find infixes first back block] ][ ;note: /-1 is NOT compatible with R3 insert tail out new ][ either new: select infixes block/1 [ insert/only head out new ][ insert/only tail out block/1 ] ] ] out ] set 'bigmath func [ "Converts a math expression for use with big numbers (only integer!s) and evaluates it" ; EVERYTHING that is not an "operator" is treated as a variable block [block!] ][ do infix-to-prefix form-nums block ] ; ] ; context big-math-ctx ] ; value? ; examples do ; just comment this line to avoid executing examples [ if system/script/title = "Functions for calculations with big integer numbers" [;do examples only if script started by us do bind [ ; bind to simplify code probedo: func [code [block!] /local result][print [result: do code mold code] :result] probedo ["10000000000000000000000000000" = big-add "9999999999999999999999999999" "1"] ; 28 9s probedo ["4750249066184057040" = big-multiply big-divide "4750249066184057040" "10263959280" "10263959280"] probedo ["4750249066184057040" = bigmath [ "4750249066184057040" / "10263959280" * "10263959280"]] probedo ["8875533354" = big-divide/modulo "4750249066184057040" "10263959283"] p: {102639592829741105772054196573991675900716567808038066800000000000790711307779} q: {106603488380168454820927220360012878679207958575989291520000000000193062808643} p+q: {209243081209909560592981416934004554579924526384027358320000000000983774116422} q-p: {3963895550427349048873023786021202778491390767951224719999999999402351500864} p*q: {10941738641570527421809707322040357612003732945449205990324526055281594740152589551544193851371914616935247444538828338494346926086632656945905593354333897} ?? p ?? q ?? p+q ?? p*q probedo [p+q = big-add p q] probedo [q-p = big-subtract q p] probedo [p*q = big-multiply p q] probedo [p = big-divide p*q q] probedo [q = big-divide p*q p] probedo [p*q = big-square-root big-square p*q] ; correct ; correct "enough" ;) probedo [p*q_2: big-square big-square-root p*q (copy/part p*q round (length? p*q) / 2) = (copy/part p*q_2 round (length? p*q_2) / 2)] ; correct "enough" ;) probedo ["1" = big-gcd p*q p+q] probedo ["1" = big-gcd "209243081209909" "152415765279684" ] probedo ["69" = big-gcd "10488" "18147"] probedo [p+q = bigmath [p+q / "152415765279684" * "152415765279684" + (p+q // "152415765279684")]] probedo ["413" = big-mod-inverse "17" "780"] ;print bigmath [5 ** (4 ** (3 ** 2))] ; this will take 20 minutes on a Athlon Dual Core 2.00 GHz ;probe big-lcm p*q p+q keysize: 64 e: "65537" ; fixed public exponent print ["^/Computing p and q for" keysize "bits..."] until ;do [ p: big-random-prime keysize ?? p q: big-random-prime keysize ?? q fi: bigmath [(p - 1) * (q - 1)] ?? fi ;lambda: bigmath [big-lcm (p - 1) (q - 1)] ;?? lambda all ["1" = big-gcd e fi];lambda]; big-greater? (big-absolute big-subtract p q) form to-integer 2 ** (keysize / 2 - 100)] ] n: bigmath [p * q] ?? n ?? e d: big-mod-inverse e fi ;lambda ?? d msg: "53183770" ;msg: "1026395928297411057720";541965739";91675900716567808038066800000000000790711307779" ?? msg ; RSA encrypt (result will be <= n, so message must be <= n or it must be subdivided) cyph: big-power-mod msg e n ?? cyph ; RSA decrypt msg: big-power-mod cyph d n ?? msg ; ] big-math-ctx ; bind ] ; if title halt ] ; do
halt ;; to terminate script if DO'ne from webpage